Program Overview

  • Duration

    1 Year (Self-Paced) Program

    Can be done in 6 months

  • Total Courses

    14-18

  • Total Credit Hours

    84-140

Our Electrical Engineering program focuses on the electrical and electronic systems that power our modern world. Students learn about circuit design, electronics, power systems, and telecommunications. They gain the skills to design and maintain electrical systems, from renewable energy solutions to advanced communication networks.

ENGINEERING FUNDAMENTALS AND TECHNICAL PROFICIENCY:

The College of Engineering is designed to establish a strong foundation in engineering fundamentals and technical proficiency. Students start by building a deep understanding of core engineering disciplines and gain hands-on experience in problem-solving and innovation. This technical base prepares students for a successful career in the dynamic field of engineering.


REAL-WORLD APPLICATIONS AND INDUSTRY PARTNERSHIPS:

Beyond the classroom, our College of Engineering places a significant emphasis on real-world applications and industry partnerships. Students have opportunities to work on engineering projects, collaborate with engineering firms, and engage in research with cutting-edge technology. These experiences not only enhance their practical engineering skills but also provide valuable insights into the industry.


GLOBAL ENGINEERING CHALLENGES AND INTERNATIONAL COLLABORATIONS:

The College of Engineering at Hudson Bay University is committed to addressing global engineering challenges and fostering international collaborations. Our curriculum explores international engineering practices and encourages students to engage in projects with global impact. Additionally, we offer study abroad programs and collaborate with engineers from around the world, enabling students to gain a global perspective on engineering.

Introduction to the Humanities offers a broad exploration of human culture and creativity. Students delve into art, literature, philosophy, and music, gaining a deeper appreciation of human expression and the diversity of human cultures.


This course delves into the dynamic relationship between place and culture. Students explore how societies shape and are shaped by their environments, addressing issues of identity, migration, and globalization in a spatial context. Various cultural landscapes and their impacts are analyzed, fostering a deeper understanding of our interconnected world.


English Composition equips students with the essential writing and communication skills necessary for academic and professional success. Topics include writing, research, critical thinking, and effective communication.


Covers college-level algebra, including algebraic concepts, equations, and functions. This course provides a foundation for advanced mathematical studies and mathematical literacy.


Examines the major world religions and their beliefs, practices, and cultural significance. Students gain a broader understanding of religious diversity and its impact on societies and cultures worldwide.


This course provides a comprehensive study of moral principles and ethical decision-making in various contexts. Students engage with ethical theories, ethical dilemmas, and case studies to develop critical thinking and moral reasoning skills. They explore ethical issues in professional, personal, and societal spheres, fostering a sense of responsibility and ethical awareness.


Art Appreciation introduces students to the world of visual arts. Students learn to analyze, appreciate, and critique various forms of visual art, enhancing their artistic literacy and cultural awareness.


Equips students with foundational mathematical concepts necessary for advanced study in calculus and related fields. Topics covered include functions, trigonometry, algebraic manipulation, and graphical analysis. This course is a crucial stepping stone for those pursuing further studies in mathematics or science.


Provides an overview of human biology, covering the structure and function of the human body. Students learn about anatomy, physiology, and the biological foundations of human life, fostering a foundational understanding of human biology.


Offers a panoramic view of global historical developments. It examines key events, figures, and cultural shifts throughout history, providing a context for understanding contemporary global dynamics. This course enables students to grasp the interconnectedness of world civilizations and the roots of the modern world.

Explore the foundational concepts of effective teaching and learning. This course covers pedagogical strategies, instructional design, and assessment techniques to enhance the teaching process and improve student outcomes.


Explore the foundational concepts of effective teaching and learning. This course covers pedagogical strategies, instructional design, and assessment techniques to enhance the teaching process and improve student outcomes.


Specialized teaching demands specialized strategies. This course equips educators with the tools and knowledge needed to effectively teach subjects and students with unique requirements.

Get an introduction to teaching middle school science, emphasizing curriculum development and instructional strategies. Analyze science content, teaching methods, and assessment practices.


Learn about the integration of computers in middle school education, covering technology integration, educational software, and computer-based learning. Analyze the role of technology in middle school classrooms.


Gain an introduction to middle school teaching, covering instructional strategies, curriculum development, and classroom management. Analyze the unique aspects of teaching at the middle school level.

Cost of Attendance

Tuition Fee Breakdown Cost
ASSOCIATE TO BACHELOR'S DEGREE (ABE) $18,480
Medical Insurance $0.00
Personal Expenses $0.00
Study Materials $0.00
Food Cost $0.00
Total Tuition Fee $18,480
WHERE AFFORDABILITY

Meets Opportunity

At Hudson Bay University, we believe in where affordability meets opportunity. Our commitment to accessible education ensures that quality learning doesn't come with a hefty price tag. We open the doors to knowledge, offering students the chance to thrive without the burden of overwhelming tuition fees, empowering them for a brighter future.

Our Eligibility Criteria

Explore HBU’s Eligibility Criteria for Students Worldwide

Eligibility Criteria

High School Diploma, GED or equiv. International Education

Credit Hours

84-140

Course Duration

1 Year (Self-Paced) Program

Courses Offered

14-18

Basics Of Industrial Engineering (ENG-062)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     History Of Engineering And Development Of Industrial Engineering
     Industrial And Systems Engineering
     Manufacturing Engineering
     Facilities Location And Layout
     Material Handling, Distribution, And Routing
  In Section 2 of this course you will cover these topics:
     Work Design And Organizational Performance, Work Measurement
     Operations Planning And Control
     Quality Control
     Financial Compensation
  In Section 3 of this course you will cover these topics:
     Cad/Cam, Robotics, And Automation
     Human Factors
     Resource Management
     Financial Management And Engineering Economy
  In Section 4 of this course you will cover these topics:
     Deterministic Operations Research
     Probabilistic Models
     Simulation
     Project Management
  In Section 5 of this course you will cover these topics:
     Systems Concepts
     Management Systems Design
     Computers And Information Systems
     Personnel Management

Introduction To Engineering (ENG-114)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Engineering And Society
     Organization And Representation Of Engineering Systems
     Learning And Problem Solving
  In Section 2 of this course you will cover these topics:
     Laws Of Nature And Theoretical Models
     Data Analysis And Empirical Models
     Modeling Interrelationships In Systems: Lightweight Structures
  In Section 3 of this course you will cover these topics:
     Modeling Interrelationships In Systems: Digital Electronic Circuits
     Modeling Change In Systems
  In Section 4 of this course you will cover these topics:
     Getting Started With Matlab
     Vector Operations In Matlab
  In Section 5 of this course you will cover these topics:
     Matrix Operations In Matlab
     Introduction To Algorithms And Programming In Matlab

Latest Developments In Engineering (ENG-163)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Vectors And Tensors
     Stress
  In Section 2 of this course you will cover these topics:
     Principal Stresses And Principal Axes
     Analysis Of Deformation
     Velocity Fields And Compatibility Conditions
  In Section 3 of this course you will cover these topics:
     Constitutive Equations
     Isotropy
     Mechanical Properties Of Real Fluids And Solids
  In Section 4 of this course you will cover these topics:
     Derivation Of Field Equations
     Field Equations And Boundary Conditions In Fluid Mechanics
  In Section 5 of this course you will cover these topics:
     Some Simple Problems In Elasticity
     Stress, Strain, And Active Remodeling Of Structures

Introduction To E-Engineering (ENG-178)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction To Internet Basics
     How Internet Works
  In Section 2 of this course you will cover these topics:
     Web And Url’S
     Web Page Design
  In Section 3 of this course you will cover these topics:
     Web Engineering
     Potential Benefits And Impacts, Particularly In Different Engineering Companies
  In Section 4 of this course you will cover these topics:
     Basic Building Blocks Of Internet
     Web Strategy
  In Section 5 of this course you will cover these topics:
     The Web Strategy Pyramid
     E-Engineering Obstacles

Advanced Fields In Engineering (ENG-195)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction To Structural Dynamics
     Free Vibration
     Response To Harmonic And Periodic Excitation
     Response To Arbitrary, Step And Pulse Excitation
  In Section 2 of this course you will cover these topics:
     Numerical Evaluation Of Dynamic Response
     Earthquake System To Linear System
     Earthquake System To Inelastic System
     Generalized Single-Degree-Of-Freedom System
  In Section 3 of this course you will cover these topics:
     Equation Of Motion, Problem Statement And Solution Methods
     Free Vibration
     Damping In Structures
     Dynamic Analysis And Response To Linear Systems
  In Section 4 of this course you will cover these topics:
     Earthquake Analysis Of Liner Systems
     Reduction Of Degree Of Freedom
     Numerical Evaluation Of The Dynamic Response
     Systems With Distributed Mass And Elasticity
  In Section 5 of this course you will cover these topics:
     Introduction To The Finite Element Methods
     Earthquake Response To Inelastic Buildings
     Earthquake Dynamics To Base Isolated Buildings
     Structural Dynamics In Building Codes

Introduction To Electrical Engineering (ENG-239)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction To Electrical Engineering
     Resistive Circuits
     Inductance And Capacitance
     Transients
  In Section 2 of this course you will cover these topics:
     Steady-State Sinusoidal Analysis
     Frequency Response, Bode Plots, And Resonance
     Logic Circuits
     Microcomputers
  In Section 3 of this course you will cover these topics:
     Computer-Based Instrumentation Systems
     Diodes
     Amplifiers: Specifications And External Characteristics
  In Section 4 of this course you will cover these topics:
     Field-Effect Transistors
     Bipolar Junction Transistors
     Operational Amplifiers
  In Section 5 of this course you will cover these topics:
     Magnetic Circuits And Transformers
     Dc Machines
     Ac Machines

Introduction To Civil Engineering (ENG-427)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Aggregates
  In Section 2 of this course you will cover these topics:
     Concrete And Other Cementitious Materials
     Masonry
  In Section 3 of this course you will cover these topics:
     Wood And Wood Products
     Bituminous Materials And Mixtures
  In Section 4 of this course you will cover these topics:
     Iron And Steel
  In Section 5 of this course you will cover these topics:
     Plastics And Soils

Foundations Of Mechanical Engineering (ENG-612)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Statically Determinate Force Systems
     Statically Determinate Stress Systems
     Stress-Strain Relations.
     Torsion
  In Section 2 of this course you will cover these topics:
     Bending Stress
     Bending: Slope And Deflection
     Statically Indeterminate Beams
  In Section 3 of this course you will cover these topics:
     Energy Methods
     Buckling Instability
     Yield Criteria And Stress Concentration
  In Section 4 of this course you will cover these topics:
     Application Of The Equilibrium And Strain-Displacement
     Elementary Plasticity
     Thin Plates And Shells
  In Section 5 of this course you will cover these topics:
     Finite Element Method
     Fracture Mechanics
     Fatigue

Introduction To Electrical Engineering (ELE-052)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Basic Circuit Theory
     The Analysis Of Dc Circuits
     The Dynamics Of Circuits
     The Analysis Of Ac Circuits
  In Section 2 of this course you will cover these topics:
     Power In Ac Circuits
     Electric Power Systems
     Semiconductor Devices And Circuits
     Digital Electronics
  In Section 3 of this course you will cover these topics:
     Analog Electronics
     Instrumentation Systems
     Communication Systems
     Linear Systems
  In Section 4 of this course you will cover these topics:
     The Physical Basis Of Electromagnetics
     Magnetic Structures And Electrical Transformers
     The Synchronous Machine
  In Section 5 of this course you will cover these topics:
     Induction Motors
     Direct-Current Motors
     Power Electronic Systems

Electric Circuit Basics (ELE-376)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Quantities And Units
     Voltage, Current, And Resistance
     Ohms Law
     Energy And Power
     Series Circuits
  In Section 2 of this course you will cover these topics:
     Parallel Circuits
     Series-Parallel Circuits
     Circuit Theorems And Conversions
     Branch, Loop, And Node Analyses
  In Section 3 of this course you will cover these topics:
     Magnetism And Electromagnetism
     Introduction To Alternating Current And Voltage
     Capacitors
     Inductors
  In Section 4 of this course you will cover these topics:
     Transformers
     Rc Circuits
     Rl Circuits
     Rlc Circuits And Resonance
  In Section 5 of this course you will cover these topics:
     Passive Filters
     Circuit Theorems In Ac Analysis
     Time Response Of Reactive Circuits
     Three-Phase Systems In Power Applications

Numerical Methods (ELE-432)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Interactive Computing With Matlab
     Matlab Programming
  In Section 2 of this course you will cover these topics:
     Organizing And Debugging Matlab Programs
     Unavoidable Errors In Computing
     Finding The Roots Of F(X) =0
  In Section 3 of this course you will cover these topics:
     A Review Of Linear Algebra
     Solving Systems Of Equations
  In Section 4 of this course you will cover these topics:
     Least-Squares Fitting Of A Curve To Data
     Interpolation
  In Section 5 of this course you will cover these topics:
     Numerical Integration
     Numerical Integration Of Ordinary Differential Equations

Communication Systems (ELE-547)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Signals And Linear Systems
     Amplitude Modulation
  In Section 2 of this course you will cover these topics:
     Angle Modulation
     Probability And Random Processes
     Effect Of Noise On Analog Communications
  In Section 3 of this course you will cover these topics:
     Analog To Digital Conversion
     Digital Modulation In Awgn Baseband Channels
     Transmission Through Bandlimited Awgn Channels
  In Section 4 of this course you will cover these topics:
     Transmission Of Digital Information Via Carrier Modulation
     Selected Topics In Digital Communications
  In Section 5 of this course you will cover these topics:
     An Introduction To Information Theory
     Coding For Reliable Communications

Introduction To Semi-Conductors (ELE-602)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Guide To Semi Conductor
     Semiconductor Family Tree
  In Section 2 of this course you will cover these topics:
     How Chips Are Designed
     How Chips Are Made
  In Section 3 of this course you will cover these topics:
     Business And Markets
     Essential Guide To Microprocessors
  In Section 4 of this course you will cover these topics:
     Essential Guide To Memory Chips
     Essential Guide To Custom And Configurable Chips
  In Section 5 of this course you will cover these topics:
     Theory

Introduction To Control Systems (ELE-737)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Control Systems Engineering
     Modeling Physical Systems: Differential Equation Models
     Transfer-Function Models
  In Section 2 of this course you will cover these topics:
     State Models
     Simulation
     Stability
  In Section 3 of this course you will cover these topics:
     Performance Criteria And Some Effects Of Feedback
     Root-Locus Techniques
     Frequency-Response Techniques
  In Section 4 of this course you will cover these topics:
     Cascade Controller Design
     Controller Design Variations
     Nonlinear Models And Simulation
  In Section 5 of this course you will cover these topics:
     Nonlinear Systems: Analytical Techniques
     The Application Of Discrete-Event Control Techniques
     Design Examples